Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients
Archivum mathematicum, Tome 35 (1999) no. 1, pp. 29-57.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we study the boundary exact controllability for the equation \[ \frac{\partial }{\partial t}\left(\alpha (t){{\partial y}\over { \partial t}}\right)-\sum _{j=1}^n{{\partial }\over {\partial x_j}}\left(\beta (t)a(x){{\partial y}\over {\partial x_j}}\right)=0\;\;\;\hbox{in}\;\; \Omega \times (0,T)\,, \] when the control action is of Dirichlet-Neumann form and $\Omega $ is a bounded domain in ${R}^n$. The result is obtained by applying the HUM (Hilbert Uniqueness Method) due to J. L. Lions.
Classification : 35B35, 35B40, 35L05, 35L99, 93B05, 93C20
Keywords: wave equation; boundary value problem; exact controllability; Dirichlet-Neumann condition
@article{ARM_1999__35_1_a3,
     author = {Cavalcanti, M. M.},
     title = {Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients},
     journal = {Archivum mathematicum},
     pages = {29--57},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1999},
     mrnumber = {1684521},
     zbl = {1046.35013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1999__35_1_a3/}
}
TY  - JOUR
AU  - Cavalcanti, M. M.
TI  - Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients
JO  - Archivum mathematicum
PY  - 1999
SP  - 29
EP  - 57
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1999__35_1_a3/
LA  - en
ID  - ARM_1999__35_1_a3
ER  - 
%0 Journal Article
%A Cavalcanti, M. M.
%T Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients
%J Archivum mathematicum
%D 1999
%P 29-57
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1999__35_1_a3/
%G en
%F ARM_1999__35_1_a3
Cavalcanti, M. M. Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients. Archivum mathematicum, Tome 35 (1999) no. 1, pp. 29-57. http://geodesic.mathdoc.fr/item/ARM_1999__35_1_a3/