Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients
Archivum mathematicum, Tome 35 (1999) no. 1, pp. 29-57
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study the boundary exact controllability for the equation \[ \frac{\partial }{\partial t}\left(\alpha (t){{\partial y}\over { \partial t}}\right)-\sum _{j=1}^n{{\partial }\over {\partial x_j}}\left(\beta (t)a(x){{\partial y}\over {\partial x_j}}\right)=0\;\;\;\hbox{in}\;\; \Omega \times (0,T)\,, \] when the control action is of Dirichlet-Neumann form and $\Omega $ is a bounded domain in ${R}^n$. The result is obtained by applying the HUM (Hilbert Uniqueness Method) due to J. L. Lions.
Classification :
35B35, 35B40, 35L05, 35L99, 93B05, 93C20
Keywords: wave equation; boundary value problem; exact controllability; Dirichlet-Neumann condition
Keywords: wave equation; boundary value problem; exact controllability; Dirichlet-Neumann condition
@article{ARM_1999__35_1_a3,
author = {Cavalcanti, M. M.},
title = {Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients},
journal = {Archivum mathematicum},
pages = {29--57},
publisher = {mathdoc},
volume = {35},
number = {1},
year = {1999},
mrnumber = {1684521},
zbl = {1046.35013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1999__35_1_a3/}
}
TY - JOUR AU - Cavalcanti, M. M. TI - Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients JO - Archivum mathematicum PY - 1999 SP - 29 EP - 57 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1999__35_1_a3/ LA - en ID - ARM_1999__35_1_a3 ER -
Cavalcanti, M. M. Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients. Archivum mathematicum, Tome 35 (1999) no. 1, pp. 29-57. http://geodesic.mathdoc.fr/item/ARM_1999__35_1_a3/