Conjugacy criteria for half-linear differential equations
Archivum mathematicum, Tome 35 (1999) no. 1, pp. 1-11
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Sufficient conditions on the function $c(t)$ ensuring that the half-linear second order differential equation \[ (|u^\prime |^{p-2} u^\prime )^\prime + c(t)|u(t)|^{p-2} u(t)=0\,, \quad \quad p>1 \] possesses a nontrivial solution having at least two zeros in a given interval are obtained. These conditions extend some recently proved conjugacy criteria for linear equations which correspond to the case $p=2$.
Classification :
34C10
Keywords: half-linear equation; scalar p-Laplacian; conjugate points; conjugacy criteria
Keywords: half-linear equation; scalar p-Laplacian; conjugate points; conjugacy criteria
@article{ARM_1999__35_1_a0,
author = {Pe\v{n}a, Sim\'on},
title = {Conjugacy criteria for half-linear differential equations},
journal = {Archivum mathematicum},
pages = {1--11},
publisher = {mathdoc},
volume = {35},
number = {1},
year = {1999},
mrnumber = {1684518},
zbl = {1054.34055},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1999__35_1_a0/}
}
Peňa, Simón. Conjugacy criteria for half-linear differential equations. Archivum mathematicum, Tome 35 (1999) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/ARM_1999__35_1_a0/