On the oscillation of a class of linear homogeneous third order differential equations
Archivum mathematicum, Tome 34 (1998) no. 4, pp. 435-443
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we have considered completely the equation \[ y^{\prime \prime \prime }+ a(t)y^{\prime \prime }+ b(t)y^\prime + c(t)y=0\,, \qquad \mathrm {(*)}\] where $a\in C^2([\sigma , \infty ), R)$, $b\in C^1([\sigma , \infty ),R)$, $c\in C([\sigma , \infty ), R)$ and $\sigma \in R$ such that $a(t)\le 0$, $b(t)\le 0$ and $c(t)\le 0$. It has been shown that the set of all oscillatory solutions of (*) forms a two-dimensional subspace of the solution space of (*) provided that (*) has an oscillatory solution. This answers a question raised by S. Ahmad and A. C. Lazer earlier.
Classification :
34C10, 34C11, 34D05
Keywords: third order differential equations; oscillation; nonoscillation; asymptotic behaviour of solutions
Keywords: third order differential equations; oscillation; nonoscillation; asymptotic behaviour of solutions
@article{ARM_1998__34_4_a2,
author = {Parhi, N. and Das, P.},
title = {On the oscillation of a class of linear homogeneous third order differential equations},
journal = {Archivum mathematicum},
pages = {435--443},
publisher = {mathdoc},
volume = {34},
number = {4},
year = {1998},
mrnumber = {1679638},
zbl = {0973.34023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1998__34_4_a2/}
}
TY - JOUR AU - Parhi, N. AU - Das, P. TI - On the oscillation of a class of linear homogeneous third order differential equations JO - Archivum mathematicum PY - 1998 SP - 435 EP - 443 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1998__34_4_a2/ LA - en ID - ARM_1998__34_4_a2 ER -
Parhi, N.; Das, P. On the oscillation of a class of linear homogeneous third order differential equations. Archivum mathematicum, Tome 34 (1998) no. 4, pp. 435-443. http://geodesic.mathdoc.fr/item/ARM_1998__34_4_a2/