Extremal solutions and relaxation for second order vector differential inclusions
Archivum mathematicum, Tome 34 (1998) no. 4, pp. 427-434.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we consider periodic and Dirichlet problems for second order vector differential inclusions. First we show the existence of extremal solutions of the periodic problem (i.e. solutions moving through the extreme points of the multifunction). Then for the Dirichlet problem we show that the extremal solutions are dense in the $C^1(T,R^N)$-norm in the set of solutions of the “convex” problem (relaxation theorem).
Classification : 34A60, 34B15, 34C25
Keywords: lower semicontinuous multifunctions; continuous embedding; compact embedding; continuous selector; extremal solution; relaxation theorem
@article{ARM_1998__34_4_a1,
     author = {Avgerinos, Evgenios P. and Papageorgiou, Nikolaos S.},
     title = {Extremal solutions and relaxation for second order vector differential inclusions},
     journal = {Archivum mathematicum},
     pages = {427--434},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {1998},
     mrnumber = {1679637},
     zbl = {0973.34010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998__34_4_a1/}
}
TY  - JOUR
AU  - Avgerinos, Evgenios P.
AU  - Papageorgiou, Nikolaos S.
TI  - Extremal solutions and relaxation for second order vector differential inclusions
JO  - Archivum mathematicum
PY  - 1998
SP  - 427
EP  - 434
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1998__34_4_a1/
LA  - en
ID  - ARM_1998__34_4_a1
ER  - 
%0 Journal Article
%A Avgerinos, Evgenios P.
%A Papageorgiou, Nikolaos S.
%T Extremal solutions and relaxation for second order vector differential inclusions
%J Archivum mathematicum
%D 1998
%P 427-434
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1998__34_4_a1/
%G en
%F ARM_1998__34_4_a1
Avgerinos, Evgenios P.; Papageorgiou, Nikolaos S. Extremal solutions and relaxation for second order vector differential inclusions. Archivum mathematicum, Tome 34 (1998) no. 4, pp. 427-434. http://geodesic.mathdoc.fr/item/ARM_1998__34_4_a1/