Higher order contact of real curves in a real hyperquadric. II
Archivum mathematicum, Tome 34 (1998) no. 3, pp. 361-377
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\Phi $ be an Hermitian quadratic form, of maximal rank and index $(n,1)$, defined over a complex $(n+1)$ vector space $V$. Consider the real
hyperquadric defined in the complex projective space $P^nV$ by \[ Q=\{[\varsigma ]\in P^nV,\;\Phi (\varsigma )=0\}. \] Let $G$ be the subgroup of the special linear group which leaves $ Q $ invariant and $D$ the $(2n)-$ distribution defined by the Cauchy Riemann structure induced over $Q$. We study the real regular curves of constant type in $Q$, tangent to $D$, finding a complete system of analytic invariants for two curves to be locally equivalent under transformations of $G$.
Classification :
32F40, 53A55, 53B25, 53B35
Keywords: geometric structures on manifolds; local submanifolds; contacttheory; actions of groups
Keywords: geometric structures on manifolds; local submanifolds; contacttheory; actions of groups
@article{ARM_1998__34_3_a4,
author = {Villarroel, Yuli},
title = {Higher order contact of real curves in a real hyperquadric. {II}},
journal = {Archivum mathematicum},
pages = {361--377},
publisher = {mathdoc},
volume = {34},
number = {3},
year = {1998},
mrnumber = {1662048},
zbl = {0967.53015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1998__34_3_a4/}
}
Villarroel, Yuli. Higher order contact of real curves in a real hyperquadric. II. Archivum mathematicum, Tome 34 (1998) no. 3, pp. 361-377. http://geodesic.mathdoc.fr/item/ARM_1998__34_3_a4/