Higher order contact of real curves in a real hyperquadric. II
Archivum mathematicum, Tome 34 (1998) no. 3, pp. 361-377.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\Phi $ be an Hermitian quadratic form, of maximal rank and index $(n,1)$, defined over a complex $(n+1)$ vector space $V$. Consider the real hyperquadric defined in the complex projective space $P^nV$ by \[ Q=\{[\varsigma ]\in P^nV,\;\Phi (\varsigma )=0\}. \] Let $G$ be the subgroup of the special linear group which leaves $ Q $ invariant and $D$ the $(2n)-$ distribution defined by the Cauchy Riemann structure induced over $Q$. We study the real regular curves of constant type in $Q$, tangent to $D$, finding a complete system of analytic invariants for two curves to be locally equivalent under transformations of $G$.
Classification : 32F40, 53A55, 53B25, 53B35
Keywords: geometric structures on manifolds; local submanifolds; contacttheory; actions of groups
@article{ARM_1998__34_3_a4,
     author = {Villarroel, Yuli},
     title = {Higher order contact of real curves in a real hyperquadric. {II}},
     journal = {Archivum mathematicum},
     pages = {361--377},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1998},
     mrnumber = {1662048},
     zbl = {0967.53015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998__34_3_a4/}
}
TY  - JOUR
AU  - Villarroel, Yuli
TI  - Higher order contact of real curves in a real hyperquadric. II
JO  - Archivum mathematicum
PY  - 1998
SP  - 361
EP  - 377
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1998__34_3_a4/
LA  - en
ID  - ARM_1998__34_3_a4
ER  - 
%0 Journal Article
%A Villarroel, Yuli
%T Higher order contact of real curves in a real hyperquadric. II
%J Archivum mathematicum
%D 1998
%P 361-377
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1998__34_3_a4/
%G en
%F ARM_1998__34_3_a4
Villarroel, Yuli. Higher order contact of real curves in a real hyperquadric. II. Archivum mathematicum, Tome 34 (1998) no. 3, pp. 361-377. http://geodesic.mathdoc.fr/item/ARM_1998__34_3_a4/