$v$-projective symmetries of fibered manifolds
Archivum mathematicum, Tome 34 (1998) no. 3, pp. 347-352.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that the set of the $v$-projective symmetries is a Lie algebra.
Classification : 53B10, 53C05, 53C22
Keywords: v-projective symmetries; the v-Weyl tensor
@article{ARM_1998__34_3_a2,
     author = {Tig\u{a}eru, C\u{a}t\u{a}lin},
     title = {$v$-projective symmetries of fibered manifolds},
     journal = {Archivum mathematicum},
     pages = {347--352},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1998},
     mrnumber = {1662040},
     zbl = {0968.53015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998__34_3_a2/}
}
TY  - JOUR
AU  - Tigăeru, Cătălin
TI  - $v$-projective symmetries of fibered manifolds
JO  - Archivum mathematicum
PY  - 1998
SP  - 347
EP  - 352
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1998__34_3_a2/
LA  - en
ID  - ARM_1998__34_3_a2
ER  - 
%0 Journal Article
%A Tigăeru, Cătălin
%T $v$-projective symmetries of fibered manifolds
%J Archivum mathematicum
%D 1998
%P 347-352
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1998__34_3_a2/
%G en
%F ARM_1998__34_3_a2
Tigăeru, Cătălin. $v$-projective symmetries of fibered manifolds. Archivum mathematicum, Tome 34 (1998) no. 3, pp. 347-352. http://geodesic.mathdoc.fr/item/ARM_1998__34_3_a2/