Natural affinors on $r$-jet prolongation of the tangent bundle
Archivum mathematicum, Tome 34 (1998) no. 2, pp. 321-328.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We deduce that for $n\ge 2$ and $r\ge 1$, every natural affinor on $J^rT$ over $n$-manifolds is of the form $\lambda \delta $ for a real number $\lambda $, where $\delta $ is the identity affinor on $J^rT$.
Classification : 53A55, 58A20
Keywords: natural affinor; jet prolongations
@article{ARM_1998__34_2_a9,
     author = {Mikulski, W. M.},
     title = {Natural affinors on $r$-jet prolongation of the tangent bundle},
     journal = {Archivum mathematicum},
     pages = {321--328},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1998},
     mrnumber = {1645340},
     zbl = {0915.58006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998__34_2_a9/}
}
TY  - JOUR
AU  - Mikulski, W. M.
TI  - Natural affinors on $r$-jet prolongation of the tangent bundle
JO  - Archivum mathematicum
PY  - 1998
SP  - 321
EP  - 328
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1998__34_2_a9/
LA  - en
ID  - ARM_1998__34_2_a9
ER  - 
%0 Journal Article
%A Mikulski, W. M.
%T Natural affinors on $r$-jet prolongation of the tangent bundle
%J Archivum mathematicum
%D 1998
%P 321-328
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1998__34_2_a9/
%G en
%F ARM_1998__34_2_a9
Mikulski, W. M. Natural affinors on $r$-jet prolongation of the tangent bundle. Archivum mathematicum, Tome 34 (1998) no. 2, pp. 321-328. http://geodesic.mathdoc.fr/item/ARM_1998__34_2_a9/