Natural affinors on $r$-jet prolongation of the tangent bundle
Archivum mathematicum, Tome 34 (1998) no. 2, pp. 321-328
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We deduce that for $n\ge 2$ and $r\ge 1$, every natural affinor on $J^rT$ over $n$-manifolds is of the form $\lambda \delta $ for a real number $\lambda $, where $\delta $ is the identity affinor on $J^rT$.
@article{ARM_1998__34_2_a9,
author = {Mikulski, W. M.},
title = {Natural affinors on $r$-jet prolongation of the tangent bundle},
journal = {Archivum mathematicum},
pages = {321--328},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {1998},
mrnumber = {1645340},
zbl = {0915.58006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1998__34_2_a9/}
}
Mikulski, W. M. Natural affinors on $r$-jet prolongation of the tangent bundle. Archivum mathematicum, Tome 34 (1998) no. 2, pp. 321-328. http://geodesic.mathdoc.fr/item/ARM_1998__34_2_a9/