Classical differential geometry with Christoffel symbols of Ehresmann $\varepsilon $-connections
Archivum mathematicum, Tome 34 (1998) no. 2, pp. 229-237
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We give a method based on an idea of O. Veblen which gives explicit formulas for the covariant derivatives of natural objects in terms of the Christoffel symbols of a symmetric Ehresmann $\varepsilon $-connection.
@article{ARM_1998__34_2_a1,
author = {Orta\c{c}gil, Erc\"ument},
title = {Classical differential geometry with {Christoffel} symbols of {Ehresmann} $\varepsilon $-connections},
journal = {Archivum mathematicum},
pages = {229--237},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {1998},
mrnumber = {1645308},
zbl = {0910.53006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1998__34_2_a1/}
}
TY - JOUR AU - Ortaçgil, Ercüment TI - Classical differential geometry with Christoffel symbols of Ehresmann $\varepsilon $-connections JO - Archivum mathematicum PY - 1998 SP - 229 EP - 237 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1998__34_2_a1/ LA - en ID - ARM_1998__34_2_a1 ER -
Ortaçgil, Ercüment. Classical differential geometry with Christoffel symbols of Ehresmann $\varepsilon $-connections. Archivum mathematicum, Tome 34 (1998) no. 2, pp. 229-237. http://geodesic.mathdoc.fr/item/ARM_1998__34_2_a1/