Periodic problems for ODEs via multivalued Poincaré operators
Archivum mathematicum, Tome 34 (1998) no. 1, pp. 93-104.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We shall consider periodic problems for ordinary differential equations of the form \[ {\left\lbrace \begin{array}{ll} x^{\prime }(t)= f(t,x(t)),\\ x(0) = x(a), \end{array}\right.} \] where $ f:[0,a] \times R^n \rightarrow R^n$ satisfies suitable assumptions. To study the above problem we shall follow an approach based on the topological degree theory. Roughly speaking, if on some ball of $R^n$, the topological degree of, associated to (), multivalued Poincaré operator $P$ turns out to be different from zero, then problem () has solutions. Next by using the multivalued version of the classical Liapunov-Krasnoselskǐ guiding potential method we calculate the topological degree of the Poincaré operator $P$. To do it we associate with $f$ a guiding potential $V$ which is assumed to be locally Lipschitzean (instead of $C^1$) and hence, by using Clarke generalized gradient calculus we are able to prove existence results for (), of the classical type, obtained earlier under the assumption that $V$ is $C^1$. Note that using a technique of the same type (adopting to the random case) we are able to obtain all of above mentioned results for the following random periodic problem: \[ {\left\lbrace \begin{array}{ll} x^{\prime }(\xi , t) = f(\xi , t, x(\xi ,t)),\\ x(\xi ,0) = x(\xi , a), \end{array}\right.} \] where $f:\Omega \times [0,a]\times R^n\rightarrow R^n$ is a random operator satisfying suitable assumptions. This paper stands a simplification of earlier works of F. S. De Blasi, G. Pianigiani and L. Górniewicz (see: [gor7], [gor8]), where the case of differential inclusions is considered.
Classification : 34B15, 34C25, 34F05, 34G20, 47H10, 47H15, 55M20
Keywords: Periodic processes; topological degree; Poincaré translation operator
@article{ARM_1998__34_1_a9,
     author = {G\'orniewicz, Lech},
     title = {Periodic problems for {ODEs} via multivalued {Poincar\'e} operators},
     journal = {Archivum mathematicum},
     pages = {93--104},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1998},
     mrnumber = {1629672},
     zbl = {0915.34029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a9/}
}
TY  - JOUR
AU  - Górniewicz, Lech
TI  - Periodic problems for ODEs via multivalued Poincaré operators
JO  - Archivum mathematicum
PY  - 1998
SP  - 93
EP  - 104
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a9/
LA  - en
ID  - ARM_1998__34_1_a9
ER  - 
%0 Journal Article
%A Górniewicz, Lech
%T Periodic problems for ODEs via multivalued Poincaré operators
%J Archivum mathematicum
%D 1998
%P 93-104
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a9/
%G en
%F ARM_1998__34_1_a9
Górniewicz, Lech. Periodic problems for ODEs via multivalued Poincaré operators. Archivum mathematicum, Tome 34 (1998) no. 1, pp. 93-104. http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a9/