Singular eigenvalue problems for second order linear ordinary differential equations
Archivum mathematicum, Tome 34 (1998) no. 1, pp. 59-72.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider linear differential equations of the form \[ (p(t)x^{\prime })^{\prime }+\lambda q(t)x=0~~~(p(t)>0,~q(t)>0) \qquad \mathrm {(A)}\] on an infinite interval $[a,\infty )$ and study the problem of finding those values of $\lambda $ for which () has principal solutions $x_{0}(t;\lambda )$ vanishing at $t = a$. This problem may well be called a singular eigenvalue problem, since requiring $x_{0}(t;\lambda )$ to be a principal solution can be considered as a boundary condition at $t=\infty $. Similarly to the regular eigenvalue problems for () on compact intervals, we can prove a theorem asserting that there exists a sequence $\lbrace \lambda _{n}\rbrace $ of eigenvalues such that $\displaystyle 0\lambda _{0}\lambda _{1}\cdots \lambda _{n}\cdots $, $\displaystyle \lim _{n\rightarrow \infty }\lambda _{n}=\infty $, and the eigenfunction $x_{0}(t;\lambda _{n})$ corresponding to $\lambda = \lambda _{n}$ has exactly $n$ zeros in $(a,\infty ),~n=0,1,2,\dots $. We also show that a similar situation holds for nonprincipal solutions of () under stronger assumptions on $p(t)$ and $q(t)$.
Classification : 34B05, 34B24, 34B40, 34C10
Keywords: Singular eigenvalue problem; Sturm-Liouville equation; zeros of nonoscillatory solutions
@article{ARM_1998__34_1_a6,
     author = {Elbert, \'Arp\'ad and Kusano, Taka\^{s}i and Naito, Manabu},
     title = {Singular eigenvalue problems for second order linear ordinary differential equations},
     journal = {Archivum mathematicum},
     pages = {59--72},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1998},
     mrnumber = {1629660},
     zbl = {0914.34021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a6/}
}
TY  - JOUR
AU  - Elbert, Árpád
AU  - Kusano, Takaŝi
AU  - Naito, Manabu
TI  - Singular eigenvalue problems for second order linear ordinary differential equations
JO  - Archivum mathematicum
PY  - 1998
SP  - 59
EP  - 72
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a6/
LA  - en
ID  - ARM_1998__34_1_a6
ER  - 
%0 Journal Article
%A Elbert, Árpád
%A Kusano, Takaŝi
%A Naito, Manabu
%T Singular eigenvalue problems for second order linear ordinary differential equations
%J Archivum mathematicum
%D 1998
%P 59-72
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a6/
%G en
%F ARM_1998__34_1_a6
Elbert, Árpád; Kusano, Takaŝi; Naito, Manabu. Singular eigenvalue problems for second order linear ordinary differential equations. Archivum mathematicum, Tome 34 (1998) no. 1, pp. 59-72. http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a6/