The nonlinear limit-point/limit-circle problem for higher order equations
Archivum mathematicum, Tome 34 (1998) no. 1, pp. 13-22
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We describe the nonlinear limit-point/limit-circle problem for the $n$-th order differential equation \[ y^{(n)} + r(t)f(y,y^{\prime }, \dots , y^{(n-1)}) = 0. \] The results are then applied to higher order linear and nonlinear equations. A discussion of fourth order equations is included, and some directions for further research are indicated.
Classification :
34B15, 34C05, 34C10, 34C15
Keywords: Higher order equations; nonlinear limit-point; nonlinear limit-circle
Keywords: Higher order equations; nonlinear limit-point; nonlinear limit-circle
@article{ARM_1998__34_1_a2,
author = {Bartu\v{s}ek, Miroslav and Do\v{s}l\'a, Zuzana and Graef, John R.},
title = {The nonlinear limit-point/limit-circle problem for higher order equations},
journal = {Archivum mathematicum},
pages = {13--22},
publisher = {mathdoc},
volume = {34},
number = {1},
year = {1998},
mrnumber = {1629644},
zbl = {0914.34023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a2/}
}
TY - JOUR AU - Bartušek, Miroslav AU - Došlá, Zuzana AU - Graef, John R. TI - The nonlinear limit-point/limit-circle problem for higher order equations JO - Archivum mathematicum PY - 1998 SP - 13 EP - 22 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a2/ LA - en ID - ARM_1998__34_1_a2 ER -
Bartušek, Miroslav; Došlá, Zuzana; Graef, John R. The nonlinear limit-point/limit-circle problem for higher order equations. Archivum mathematicum, Tome 34 (1998) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a2/