On small solutions of second order differential equations with random coefficients
Archivum mathematicum, Tome 34 (1998) no. 1, pp. 119-126
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider the equation \[x^{\prime \prime }+a^2(t)x=0,\qquad a(t):=a_k\ \hbox{ if }t_{k-1}\le t,\ \hbox{ for }k=1,2,\ldots ,\] where $\lbrace a_k\rbrace $ is a given increasing sequence of positive numbers, and $\lbrace t_k\rbrace $ is chosen at random so that $\lbrace t_k-t_{k-1}\rbrace $ are totally independent random variables uniformly distributed on interval $[0,1]$. We determine the probability of the event that all solutions of the equation tend to zero as $t\rightarrow \infty $.
Classification :
34D20, 34F05, 60H10, 60K40
Keywords: Asymptotic stability; energy method; small solution
Keywords: Asymptotic stability; energy method; small solution
@article{ARM_1998__34_1_a11,
author = {Hatvani, L\'aszl\'o and Stach\'o, L\'aszl\'o},
title = {On small solutions of second order differential equations with random coefficients},
journal = {Archivum mathematicum},
pages = {119--126},
publisher = {mathdoc},
volume = {34},
number = {1},
year = {1998},
mrnumber = {1629680},
zbl = {0915.34051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a11/}
}
TY - JOUR AU - Hatvani, László AU - Stachó, László TI - On small solutions of second order differential equations with random coefficients JO - Archivum mathematicum PY - 1998 SP - 119 EP - 126 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a11/ LA - en ID - ARM_1998__34_1_a11 ER -
Hatvani, László; Stachó, László. On small solutions of second order differential equations with random coefficients. Archivum mathematicum, Tome 34 (1998) no. 1, pp. 119-126. http://geodesic.mathdoc.fr/item/ARM_1998__34_1_a11/