On a criterion for the existence of at least four solutions of functional boundary value problems
Archivum mathematicum, Tome 33 (1997) no. 4, pp. 335-348
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A class of functional boundary conditions for the second order functional differential equation $x''(t)=(Fx)(t)$ is introduced. Here $F:C^1(J) \rightarrow L_1(J)$ is a nonlinear continuous unbounded operator. Sufficient conditions for the existence of at least four solutions are given. The proofs are based on the Bihari lemma, the topological method of homotopy, the Leray-Schauder degree and the Borsuk theorem.
Classification :
47H15, 47N20
Keywords: functional boundary conditions; functional differential equation; existence; multiplicity; Bihari lemma; homotopy; Leray Schauder degree; Borsuk theorem
Keywords: functional boundary conditions; functional differential equation; existence; multiplicity; Bihari lemma; homotopy; Leray Schauder degree; Borsuk theorem
@article{ARM_1997__33_4_a7,
author = {Stan\v{e}k, Svatoslav},
title = {On a criterion for the existence of at least four solutions of functional boundary value problems},
journal = {Archivum mathematicum},
pages = {335--348},
publisher = {mathdoc},
volume = {33},
number = {4},
year = {1997},
mrnumber = {1601341},
zbl = {0914.34063},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1997__33_4_a7/}
}
TY - JOUR AU - Staněk, Svatoslav TI - On a criterion for the existence of at least four solutions of functional boundary value problems JO - Archivum mathematicum PY - 1997 SP - 335 EP - 348 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1997__33_4_a7/ LA - en ID - ARM_1997__33_4_a7 ER -
Staněk, Svatoslav. On a criterion for the existence of at least four solutions of functional boundary value problems. Archivum mathematicum, Tome 33 (1997) no. 4, pp. 335-348. http://geodesic.mathdoc.fr/item/ARM_1997__33_4_a7/