Commutativity of associative rings through a Streb's classification
Archivum mathematicum, Tome 33 (1997) no. 4, pp. 315-321.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $m \geq 0, ~r \geq 0, ~s \geq 0, ~q \geq 0$ be fixed integers. Suppose that $R$ is an associative ring with unity $1$ in which for each $x,y \in R$ there exist polynomials $f(X) \in X^{2} \mbox{$Z \hspace{-2.2mm} Z$}[X], ~g(X), ~h(X) \in X \mbox{$Z \hspace{-2.2mm} Z$}[X]$ such that $\{ 1-g (yx^{m}) \} [x, ~x^{r}y ~-~ x^{s}f (y x^{m}) x^{q}] \{ 1-h(yx^{m}) \} ~=~ 0$. Then $R$ is commutative. Further, result is extended to the case when the integral exponents in the above property depend on the choice of $x$ and $y$. Finally, commutativity of one sided s-unital ring is also obtained when $R$ satisfies some related ring properties.
Classification : 16U70, 16U80
Keywords: factorsubring; s-unital ring; commutativity; commutator; associative ring
@article{ARM_1997__33_4_a5,
     author = {Ashraf, Mohammad},
     title = {Commutativity of associative rings through a {Streb's} classification},
     journal = {Archivum mathematicum},
     pages = {315--321},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {1997},
     mrnumber = {1601337},
     zbl = {0913.16017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1997__33_4_a5/}
}
TY  - JOUR
AU  - Ashraf, Mohammad
TI  - Commutativity of associative rings through a Streb's classification
JO  - Archivum mathematicum
PY  - 1997
SP  - 315
EP  - 321
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1997__33_4_a5/
LA  - en
ID  - ARM_1997__33_4_a5
ER  - 
%0 Journal Article
%A Ashraf, Mohammad
%T Commutativity of associative rings through a Streb's classification
%J Archivum mathematicum
%D 1997
%P 315-321
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1997__33_4_a5/
%G en
%F ARM_1997__33_4_a5
Ashraf, Mohammad. Commutativity of associative rings through a Streb's classification. Archivum mathematicum, Tome 33 (1997) no. 4, pp. 315-321. http://geodesic.mathdoc.fr/item/ARM_1997__33_4_a5/