Commutativity of associative rings through a Streb's classification
Archivum mathematicum, Tome 33 (1997) no. 4, pp. 315-321
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $m \geq 0, ~r \geq 0, ~s \geq 0, ~q \geq 0$ be fixed integers. Suppose that $R$ is an associative ring with unity $1$ in which for each $x,y \in R$
there exist polynomials $f(X) \in X^{2} \mbox{$Z \hspace{-2.2mm} Z$}[X], ~g(X), ~h(X) \in X \mbox{$Z \hspace{-2.2mm} Z$}[X]$ such that $\{ 1-g (yx^{m}) \} [x, ~x^{r}y ~-~ x^{s}f (y x^{m}) x^{q}] \{ 1-h(yx^{m}) \} ~=~ 0$. Then $R$ is commutative. Further, result is extended to the case when the integral exponents in the above property depend on the choice of $x$ and $y$. Finally, commutativity of one sided s-unital ring is also obtained when $R$ satisfies some related ring properties.
Classification :
16U70, 16U80
Keywords: factorsubring; s-unital ring; commutativity; commutator; associative ring
Keywords: factorsubring; s-unital ring; commutativity; commutator; associative ring
@article{ARM_1997__33_4_a5,
author = {Ashraf, Mohammad},
title = {Commutativity of associative rings through a {Streb's} classification},
journal = {Archivum mathematicum},
pages = {315--321},
publisher = {mathdoc},
volume = {33},
number = {4},
year = {1997},
mrnumber = {1601337},
zbl = {0913.16017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1997__33_4_a5/}
}
Ashraf, Mohammad. Commutativity of associative rings through a Streb's classification. Archivum mathematicum, Tome 33 (1997) no. 4, pp. 315-321. http://geodesic.mathdoc.fr/item/ARM_1997__33_4_a5/