On a generalized Wiener-Hopf integral equation
Archivum mathematicum, Tome 33 (1997) no. 4, pp. 273-278.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\alpha $ be such that $0\alpha \frac{1}{2}$. In this note we use the Mittag-Leffler partial fractions expansion for $F_\alpha (\theta )=\Gamma \left(1-\alpha -\frac{\theta }{\pi }\right) \Gamma (\alpha )/ \Gamma \left( \alpha -\frac{\theta }{\pi }\right) \Gamma (1-\alpha )$ to obtain a solution of a Wiener-Hopf integral equation.
Classification : 45E10
Keywords: Wiener-Hopf integral equation
@article{ARM_1997__33_4_a1,
     author = {McGregor, Malcolm T.},
     title = {On a generalized {Wiener-Hopf} integral equation},
     journal = {Archivum mathematicum},
     pages = {273--278},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {1997},
     mrnumber = {1601321},
     zbl = {0912.45003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1997__33_4_a1/}
}
TY  - JOUR
AU  - McGregor, Malcolm T.
TI  - On a generalized Wiener-Hopf integral equation
JO  - Archivum mathematicum
PY  - 1997
SP  - 273
EP  - 278
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1997__33_4_a1/
LA  - en
ID  - ARM_1997__33_4_a1
ER  - 
%0 Journal Article
%A McGregor, Malcolm T.
%T On a generalized Wiener-Hopf integral equation
%J Archivum mathematicum
%D 1997
%P 273-278
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1997__33_4_a1/
%G en
%F ARM_1997__33_4_a1
McGregor, Malcolm T. On a generalized Wiener-Hopf integral equation. Archivum mathematicum, Tome 33 (1997) no. 4, pp. 273-278. http://geodesic.mathdoc.fr/item/ARM_1997__33_4_a1/