On periodic solutions of systems of linear functional-differential equations
Archivum mathematicum, Tome 33 (1997) no. 3, pp. 197-212
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper deals with the system of functional-differential equations \[ \frac{dx(t)}{dt}=p(x)(t)+q(t), \] where $p:C_\omega ({R}^n)\rightarrow L_\omega ({R}^n)$ is a linear bounded operator, $q\in L_\omega ({R}^n)$, $\omega >0$ and $C_\omega ({R}^n)$ and $L_\omega ({R}^n)$ are spaces of $n$-dimensional $\omega $-periodic vector functions with continuous and integrable on $[0,\omega ]$ components, respectively. Conditions which guarantee the existence of a unique $\omega $-periodic solution and continuous dependence of that solution on the right hand side of the system considered are established.
Classification :
34C25, 34K05, 34K13, 34K15
Keywords: linear functional-differential system; differential system with deviated argument; $\omega$-periodic solution
Keywords: linear functional-differential system; differential system with deviated argument; $\omega$-periodic solution
@article{ARM_1997__33_3_a2,
author = {Kiguradze, Ivan and P\r{u}\v{z}a, Bed\v{r}ich},
title = {On periodic solutions of systems of linear functional-differential equations},
journal = {Archivum mathematicum},
pages = {197--212},
publisher = {mathdoc},
volume = {33},
number = {3},
year = {1997},
mrnumber = {1478773},
zbl = {0914.34062},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1997__33_3_a2/}
}
TY - JOUR AU - Kiguradze, Ivan AU - Půža, Bedřich TI - On periodic solutions of systems of linear functional-differential equations JO - Archivum mathematicum PY - 1997 SP - 197 EP - 212 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1997__33_3_a2/ LA - en ID - ARM_1997__33_3_a2 ER -
Kiguradze, Ivan; Půža, Bedřich. On periodic solutions of systems of linear functional-differential equations. Archivum mathematicum, Tome 33 (1997) no. 3, pp. 197-212. http://geodesic.mathdoc.fr/item/ARM_1997__33_3_a2/