Antidomatic number of a graph
Archivum mathematicum, Tome 33 (1997) no. 3, pp. 191-195.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A subset $D$ of the vertex set $V(G)$ of a graph $G$ is called dominating in $G$, if for each $x\in V(G)-D$ there exists $y\in D$ adjacent to $x$. An antidomatic partition of $G$ is a partition of $V(G)$, none of whose classes is a dominating set in $G$. The minimum number of classes of an antidomatic partition of $G$ is the number $\bar{d} (G)$ of $G$. Its properties are studied.
Classification : 05C35
Keywords: dominating set; antidomatic partition; antidomatic number
@article{ARM_1997__33_3_a1,
     author = {Zelinka, Bohdan},
     title = {Antidomatic number of a graph},
     journal = {Archivum mathematicum},
     pages = {191--195},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1997},
     mrnumber = {1478772},
     zbl = {0909.05031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1997__33_3_a1/}
}
TY  - JOUR
AU  - Zelinka, Bohdan
TI  - Antidomatic number of a graph
JO  - Archivum mathematicum
PY  - 1997
SP  - 191
EP  - 195
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1997__33_3_a1/
LA  - en
ID  - ARM_1997__33_3_a1
ER  - 
%0 Journal Article
%A Zelinka, Bohdan
%T Antidomatic number of a graph
%J Archivum mathematicum
%D 1997
%P 191-195
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1997__33_3_a1/
%G en
%F ARM_1997__33_3_a1
Zelinka, Bohdan. Antidomatic number of a graph. Archivum mathematicum, Tome 33 (1997) no. 3, pp. 191-195. http://geodesic.mathdoc.fr/item/ARM_1997__33_3_a1/