Antidomatic number of a graph
Archivum mathematicum, Tome 33 (1997) no. 3, pp. 191-195
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A subset $D$ of the vertex set $V(G)$ of a graph $G$ is called dominating in $G$, if for each $x\in V(G)-D$ there exists $y\in D$ adjacent to $x$. An antidomatic partition of $G$ is a partition of $V(G)$, none of whose classes is a dominating set in $G$. The minimum number of classes of an antidomatic partition of $G$ is the number $\bar{d} (G)$ of $G$. Its properties are studied.
@article{ARM_1997__33_3_a1,
author = {Zelinka, Bohdan},
title = {Antidomatic number of a graph},
journal = {Archivum mathematicum},
pages = {191--195},
publisher = {mathdoc},
volume = {33},
number = {3},
year = {1997},
mrnumber = {1478772},
zbl = {0909.05031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1997__33_3_a1/}
}
Zelinka, Bohdan. Antidomatic number of a graph. Archivum mathematicum, Tome 33 (1997) no. 3, pp. 191-195. http://geodesic.mathdoc.fr/item/ARM_1997__33_3_a1/