Periodic boundary value problem of a fourth order differential inclusion
Archivum mathematicum, Tome 33 (1997) no. 1-2, pp. 167-171.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper deals with the periodic boundary value problem (1) $L_4 x(t) + a(t)x(t) \in F(t,x(t))$, $t\in J= [a,b]$, (2) $L_i x(a)= L_i x(b)$, $i=0,1,2,3$, where $L_0x(t)= a_0x(t)$, $L_ix(t)=a_i(t)L_{i-1}x(t)$, $i=1,2,3,4$, $a_0(t)= a_4(t)=1$, $a_i(t)$, $i=1,2,3$ and $a(t)$ are continuous on $J$, $a(t)\geq 0$, $a_i(t)>0$, $i=1,2$, $a_1(t)= a_3(t)\cdot F(t,x): J \times R \to$\{nonempty convex compact subsets of $R$\}, $R= (-\infty , \infty )$. The existence of such periodic solution is proven via Ky Fan's fixed point theorem.
Classification : 34A60, 34B15, 34C25, 47J05, 47N20
Keywords: nonlinear boundary value problem; differential inclusion; measurable selector; Ky Fan’s fixed point theorem
@article{ARM_1997__33_1-2_a17,
     author = {\v{S}vec, Marko},
     title = {Periodic boundary value problem of a fourth order differential inclusion},
     journal = {Archivum mathematicum},
     pages = {167--171},
     publisher = {mathdoc},
     volume = {33},
     number = {1-2},
     year = {1997},
     mrnumber = {1464311},
     zbl = {0914.34015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1997__33_1-2_a17/}
}
TY  - JOUR
AU  - Švec, Marko
TI  - Periodic boundary value problem of a fourth order differential inclusion
JO  - Archivum mathematicum
PY  - 1997
SP  - 167
EP  - 171
VL  - 33
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1997__33_1-2_a17/
LA  - en
ID  - ARM_1997__33_1-2_a17
ER  - 
%0 Journal Article
%A Švec, Marko
%T Periodic boundary value problem of a fourth order differential inclusion
%J Archivum mathematicum
%D 1997
%P 167-171
%V 33
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1997__33_1-2_a17/
%G en
%F ARM_1997__33_1-2_a17
Švec, Marko. Periodic boundary value problem of a fourth order differential inclusion. Archivum mathematicum, Tome 33 (1997) no. 1-2, pp. 167-171. http://geodesic.mathdoc.fr/item/ARM_1997__33_1-2_a17/