Some classes of linear $n$th-order differential equations
Archivum mathematicum, Tome 33 (1997) no. 1-2, pp. 157-165.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Sufficient conditions for the $n$-th order linear differential equation are derived which guarantee that its Cauchy function $K$, together with its derivatives ${\partial ^i K}\over {\partial t^i}$, $i=1,\dots ,n-1$, is of constant sign. These conditions determine four classes of the linear differential equations. Further properties of these classes are investigated.
Classification : 34A40, 34D05
Keywords: Cauchy function; Čaplygin comparison theorem; monotonic solutions; regularity of bands
@article{ARM_1997__33_1-2_a16,
     author = {\v{S}eda, Valter},
     title = {Some classes of linear $n$th-order differential equations},
     journal = {Archivum mathematicum},
     pages = {157--165},
     publisher = {mathdoc},
     volume = {33},
     number = {1-2},
     year = {1997},
     mrnumber = {1464310},
     zbl = {0914.34011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1997__33_1-2_a16/}
}
TY  - JOUR
AU  - Šeda, Valter
TI  - Some classes of linear $n$th-order differential equations
JO  - Archivum mathematicum
PY  - 1997
SP  - 157
EP  - 165
VL  - 33
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1997__33_1-2_a16/
LA  - en
ID  - ARM_1997__33_1-2_a16
ER  - 
%0 Journal Article
%A Šeda, Valter
%T Some classes of linear $n$th-order differential equations
%J Archivum mathematicum
%D 1997
%P 157-165
%V 33
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1997__33_1-2_a16/
%G en
%F ARM_1997__33_1-2_a16
Šeda, Valter. Some classes of linear $n$th-order differential equations. Archivum mathematicum, Tome 33 (1997) no. 1-2, pp. 157-165. http://geodesic.mathdoc.fr/item/ARM_1997__33_1-2_a16/