Calculus of flows on convenient manifolds
Archivum mathematicum, Tome 32 (1996) no. 4, pp. 355-372.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The study of diffeomorphism group actions requires methods of infinite dimensional analysis. Really convenient tools can be found in the Frölicher - Kriegl - Michor differentiation theory and its geometrical aspects. In terms of it we develop the calculus of various types of one parameter diffeomorphism groups in infinite dimensional spaces with smooth structure. Some spectral properties of the derivative of exponential mapping for manifolds are given.
Classification : 22E65, 58B25, 58D05
Keywords: flow; diffeomorphism group; regular Lie group action; Frölicher-Kriegl differential calculus; 1-parameter group of bounded operators
@article{ARM_1996__32_4_a9,
     author = {Zajtz, Andrzej},
     title = {Calculus of flows on convenient manifolds},
     journal = {Archivum mathematicum},
     pages = {355--372},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1996},
     mrnumber = {1441405},
     zbl = {0881.58012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1996__32_4_a9/}
}
TY  - JOUR
AU  - Zajtz, Andrzej
TI  - Calculus of flows on convenient manifolds
JO  - Archivum mathematicum
PY  - 1996
SP  - 355
EP  - 372
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1996__32_4_a9/
LA  - en
ID  - ARM_1996__32_4_a9
ER  - 
%0 Journal Article
%A Zajtz, Andrzej
%T Calculus of flows on convenient manifolds
%J Archivum mathematicum
%D 1996
%P 355-372
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1996__32_4_a9/
%G en
%F ARM_1996__32_4_a9
Zajtz, Andrzej. Calculus of flows on convenient manifolds. Archivum mathematicum, Tome 32 (1996) no. 4, pp. 355-372. http://geodesic.mathdoc.fr/item/ARM_1996__32_4_a9/