Calculus of flows on convenient manifolds
Archivum mathematicum, Tome 32 (1996) no. 4, pp. 355-372
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The study of diffeomorphism group actions requires methods of infinite dimensional analysis. Really convenient tools can be found in the Frölicher - Kriegl - Michor differentiation theory and its geometrical aspects. In terms of it we develop the calculus of various types of one parameter diffeomorphism groups in infinite dimensional spaces with smooth structure. Some spectral properties of the derivative of exponential mapping for manifolds are given.
Classification :
22E65, 58B25, 58D05
Keywords: flow; diffeomorphism group; regular Lie group action; Frölicher-Kriegl differential calculus; 1-parameter group of bounded operators
Keywords: flow; diffeomorphism group; regular Lie group action; Frölicher-Kriegl differential calculus; 1-parameter group of bounded operators
@article{ARM_1996__32_4_a9,
author = {Zajtz, Andrzej},
title = {Calculus of flows on convenient manifolds},
journal = {Archivum mathematicum},
pages = {355--372},
publisher = {mathdoc},
volume = {32},
number = {4},
year = {1996},
mrnumber = {1441405},
zbl = {0881.58012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1996__32_4_a9/}
}
Zajtz, Andrzej. Calculus of flows on convenient manifolds. Archivum mathematicum, Tome 32 (1996) no. 4, pp. 355-372. http://geodesic.mathdoc.fr/item/ARM_1996__32_4_a9/