Periodic solutions for nonlinear evolution inclusions
Archivum mathematicum, Tome 32 (1996) no. 3, pp. 195-209
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we prove the existence of periodic solutions for a class of nonlinear evolution inclusions defined in an evolution triple of spaces $(X,H,X^{*})$ and driven by a demicontinuous pseudomonotone coercive operator and an upper semicontinuous multivalued perturbation defined on $T\times X$ with values in $H$. Our proof is based on a known result about the surjectivity of the sum of two operators of monotone type and on the fact that the property of pseudomonotonicity is lifted to the Nemitsky operator, which we prove in this paper.
Classification :
34A60, 34C25, 34G20, 47H15, 47N20
Keywords: evolution triple; compact embedding; pseudomonotone operator; demicontinuity; coercive operator; dominated convergence theorem
Keywords: evolution triple; compact embedding; pseudomonotone operator; demicontinuity; coercive operator; dominated convergence theorem
@article{ARM_1996__32_3_a4,
author = {Kandilakis, Dimitrios A. and Papageorgiou, Nikolaos S.},
title = {Periodic solutions for nonlinear evolution inclusions},
journal = {Archivum mathematicum},
pages = {195--209},
publisher = {mathdoc},
volume = {32},
number = {3},
year = {1996},
mrnumber = {1421856},
zbl = {0908.34043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1996__32_3_a4/}
}
TY - JOUR AU - Kandilakis, Dimitrios A. AU - Papageorgiou, Nikolaos S. TI - Periodic solutions for nonlinear evolution inclusions JO - Archivum mathematicum PY - 1996 SP - 195 EP - 209 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1996__32_3_a4/ LA - en ID - ARM_1996__32_3_a4 ER -
Kandilakis, Dimitrios A.; Papageorgiou, Nikolaos S. Periodic solutions for nonlinear evolution inclusions. Archivum mathematicum, Tome 32 (1996) no. 3, pp. 195-209. http://geodesic.mathdoc.fr/item/ARM_1996__32_3_a4/