A note on regular points for solutions of nonlinear elliptic systems
Archivum mathematicum, Tome 32 (1996) no. 2, pp. 105-116
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is shown in this paper that gradient of vector valued function $ u(x), $ solution of a nonlinear elliptic system, cannot be too close to a straight line without $ u(x) $ being regular.
@article{ARM_1996__32_2_a2,
author = {Dan\v{e}\v{c}ek, Josef and Viszus, Eugen},
title = {A note on regular points for solutions of nonlinear elliptic systems},
journal = {Archivum mathematicum},
pages = {105--116},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {1996},
mrnumber = {1407342},
zbl = {0903.35010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1996__32_2_a2/}
}
Daněček, Josef; Viszus, Eugen. A note on regular points for solutions of nonlinear elliptic systems. Archivum mathematicum, Tome 32 (1996) no. 2, pp. 105-116. http://geodesic.mathdoc.fr/item/ARM_1996__32_2_a2/