The oscillation of an $m$th order perturbed nonlinear difference equation
Archivum mathematicum, Tome 32 (1996) no. 1, pp. 13-27
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We offer sufficient conditions for the oscillation of all solutions of the perturbed difference equation $$|\Delta^{m} y(k)|^{\alpha-1}\Delta^{m} y(k)+Q(k,y(k-\sigma_{k}), \Delta y(k-\sigma_{k}),\cdots, \Delta^{m-2}y(k-\sigma_{k}))$$ \hfill $=P(k,y(k-\sigma_{k}),\Delta y(k-\sigma_{k}),\cdots, \Delta^{m-1}y(k-\sigma_{k})),~k\geq k_{0}$ where $\alpha>0.$ Examples which dwell upon the importance of our results are also included.
@article{ARM_1996__32_1_a2,
author = {Wong, P. J. Y. and Agarwal, Ravi P.},
title = {The oscillation of an $m$th order perturbed nonlinear difference equation},
journal = {Archivum mathematicum},
pages = {13--27},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {1996},
mrnumber = {1399838},
zbl = {0870.39001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1996__32_1_a2/}
}
TY - JOUR AU - Wong, P. J. Y. AU - Agarwal, Ravi P. TI - The oscillation of an $m$th order perturbed nonlinear difference equation JO - Archivum mathematicum PY - 1996 SP - 13 EP - 27 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1996__32_1_a2/ LA - en ID - ARM_1996__32_1_a2 ER -
Wong, P. J. Y.; Agarwal, Ravi P. The oscillation of an $m$th order perturbed nonlinear difference equation. Archivum mathematicum, Tome 32 (1996) no. 1, pp. 13-27. http://geodesic.mathdoc.fr/item/ARM_1996__32_1_a2/