A contact metric manifold satisfying a certain curvature condition
Archivum mathematicum, Tome 31 (1995) no. 4, pp. 319-333
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In the present paper we investigate a contact metric manifold satisfying (C) $(\bar{\nabla }_{\dot{\gamma }}R)(\cdot ,\dot{\gamma })\dot{\gamma }=0$ for any $\bar{\nabla }$-geodesic $\gamma $, where $\bar{\nabla }$ is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $. Also, we prove a structure theorem for a contact metric manifold with $\xi $ belonging to the $k$-nullity distribution and satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $.
Classification :
53C15, 53C25, 53C35
Keywords: contact metric manifolds; Tanaka connection; Jacobi operator
Keywords: contact metric manifolds; Tanaka connection; Jacobi operator
@article{ARM_1995__31_4_a9,
author = {Cho, Jong Taek},
title = {A contact metric manifold satisfying a certain curvature condition},
journal = {Archivum mathematicum},
pages = {319--333},
publisher = {mathdoc},
volume = {31},
number = {4},
year = {1995},
mrnumber = {1390592},
zbl = {0849.53030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995__31_4_a9/}
}
Cho, Jong Taek. A contact metric manifold satisfying a certain curvature condition. Archivum mathematicum, Tome 31 (1995) no. 4, pp. 319-333. http://geodesic.mathdoc.fr/item/ARM_1995__31_4_a9/