Classification of nonoscillatory solutions of higher order neutral type difference equations
Archivum mathematicum, Tome 31 (1995) no. 4, pp. 263-277.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The authors consider the difference equation \[ \Delta ^{m} [y_{n} - p_{n} y_{n - k}] + \delta q_{n} y_{\sigma (n + m - 1)} = 0 \qquad \mathrm {(\ast )}\] where $m \ge 2$, $\delta = \pm 1$, $k \in N_0 = \lbrace 0,1, 2, \dots \rbrace $, $\Delta y_{n} = y_{n + 1} - y_{n}$, $q_{n} > 0$, and $\lbrace \sigma (n)\rbrace $ is a sequence of integers with $\sigma (n) \le n$ and $\lim _{n \rightarrow \infty } \sigma (n) = \infty $. They obtain results on the classification of the set of nonoscillatory solutions of ($\ast $) and use a fixed point method to show the existence of solutions having certain types of asymptotic behavior. Examples illustrating the results are included.
Classification : 39A10, 39A12
Keywords: difference equations; nonlinear; asymptotic behavior; nonoscillatory solutions
@article{ARM_1995__31_4_a2,
     author = {Thandapani, E. and Sundaram, P. and Graef, John R. and Miciano, A. and Spikes, Paul W.},
     title = {Classification of nonoscillatory solutions of higher order neutral type difference equations},
     journal = {Archivum mathematicum},
     pages = {263--277},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {1995},
     mrnumber = {1390585},
     zbl = {0855.39014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995__31_4_a2/}
}
TY  - JOUR
AU  - Thandapani, E.
AU  - Sundaram, P.
AU  - Graef, John R.
AU  - Miciano, A.
AU  - Spikes, Paul W.
TI  - Classification of nonoscillatory solutions of higher order neutral type difference equations
JO  - Archivum mathematicum
PY  - 1995
SP  - 263
EP  - 277
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1995__31_4_a2/
LA  - en
ID  - ARM_1995__31_4_a2
ER  - 
%0 Journal Article
%A Thandapani, E.
%A Sundaram, P.
%A Graef, John R.
%A Miciano, A.
%A Spikes, Paul W.
%T Classification of nonoscillatory solutions of higher order neutral type difference equations
%J Archivum mathematicum
%D 1995
%P 263-277
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1995__31_4_a2/
%G en
%F ARM_1995__31_4_a2
Thandapani, E.; Sundaram, P.; Graef, John R.; Miciano, A.; Spikes, Paul W. Classification of nonoscillatory solutions of higher order neutral type difference equations. Archivum mathematicum, Tome 31 (1995) no. 4, pp. 263-277. http://geodesic.mathdoc.fr/item/ARM_1995__31_4_a2/