Some natural operators on vector fields
Archivum mathematicum, Tome 31 (1995) no. 3, pp. 239-249
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We determine all natural operators transforming vector fields on a manifold $M$ to vector fields on $T^*T^2_1M$, $\operatorname{dim}M \ge 2$, and all natural operators transforming vector fields on $M$ to functions on $T^*TT^2_1M$, $\operatorname{dim}M \ge 3$. We describe some relations between these two kinds of natural operators.
Classification :
53A55, 58A20
Keywords: vector field; natural bundle; natural operator; Weil bundle
Keywords: vector field; natural bundle; natural operator; Weil bundle
@article{ARM_1995__31_3_a6,
author = {Tom\'a\v{s}, Ji\v{r}{\'\i}},
title = {Some natural operators on vector fields},
journal = {Archivum mathematicum},
pages = {239--249},
publisher = {mathdoc},
volume = {31},
number = {3},
year = {1995},
mrnumber = {1368261},
zbl = {0844.58007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a6/}
}
Tomáš, Jiří. Some natural operators on vector fields. Archivum mathematicum, Tome 31 (1995) no. 3, pp. 239-249. http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a6/