Conjugacy criteria and principal solutions of self-adjoint differential equations
Archivum mathematicum, Tome 31 (1995) no. 3, pp. 217-238.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Oscillation properties of the self-adjoint, two term, differential equation \[(-1)^n(p(x)y^{(n)})^{(n)}+q(x)y=0\qquad \mathrm {(*)}\] are investigated. Using the variational method and the concept of the principal system of solutions it is proved that (*) is conjugate on $R=(-\infty ,\infty )$ if there exist an integer $m\in \lbrace 0,1,\dots ,n-1\rbrace $ and $c_0,\dots ,c_m\in R$ such that \[\int _\infty ^0 x^{2(n-m-1)}p^{-1}(x)\,dx=\infty =\int _0^\infty x^{2(n-m-1)}p^{-1}(x)\,dx\] and \[\limsup _{x_1\downarrow -\infty ,x_2\uparrow \infty }\int _{x_1}^{x_2}q(x)(c_0+c_1x+\dots + c_mx^m)^2\,dx\le 0,\quad q(x)\lnot \equiv 0.\] Some extensions of this criterion are suggested.
Classification : 34C10
Keywords: conjugate points; principal system of solutions; variational method; conjugacy criteria
@article{ARM_1995__31_3_a5,
     author = {Do\v{s}l\'y, Ond\v{r}ej and Komenda, Jan},
     title = {Conjugacy criteria and principal solutions of self-adjoint differential equations},
     journal = {Archivum mathematicum},
     pages = {217--238},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1995},
     mrnumber = {1368260},
     zbl = {0841.34033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a5/}
}
TY  - JOUR
AU  - Došlý, Ondřej
AU  - Komenda, Jan
TI  - Conjugacy criteria and principal solutions of self-adjoint differential equations
JO  - Archivum mathematicum
PY  - 1995
SP  - 217
EP  - 238
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a5/
LA  - en
ID  - ARM_1995__31_3_a5
ER  - 
%0 Journal Article
%A Došlý, Ondřej
%A Komenda, Jan
%T Conjugacy criteria and principal solutions of self-adjoint differential equations
%J Archivum mathematicum
%D 1995
%P 217-238
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a5/
%G en
%F ARM_1995__31_3_a5
Došlý, Ondřej; Komenda, Jan. Conjugacy criteria and principal solutions of self-adjoint differential equations. Archivum mathematicum, Tome 31 (1995) no. 3, pp. 217-238. http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a5/