A commutativity theorem for associative rings
Archivum mathematicum, Tome 31 (1995) no. 3, pp. 201-204.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $m > 1, s\geq 1$ be fixed positive integers, and let $R$ be a ring with unity $1$ in which for every $x$ in $R$ there exist integers $p = p(x) \geq 0, q = q(x) \geq 0, n = n(x) \geq 0, r = r(x) \geq 0 $ such that either $ x^{p}[x^{n},y]x^{q} = x^{r}[x,y^{m}]y^{s} $ or $ x^{p}[x^{n},y]x^{q} = y^{s}[x,y^{m}]x^{r} $ for all $ y \in R $. In the present paper it is shown that $R$ is commutative if it satisfies the property $Q(m)$ (i.e. for all $x,y \in R, m[x,y] = 0$ implies $[x,y] = 0$).
Classification : 16R50, 16U70, 16U80
Keywords: polynomial identity; nilpotent element; commutator ideal; associative ring; torsion free ring; center; commutativity
@article{ARM_1995__31_3_a3,
     author = {Ashraf, Mohammad},
     title = {A commutativity theorem for associative rings},
     journal = {Archivum mathematicum},
     pages = {201--204},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1995},
     mrnumber = {1368258},
     zbl = {0839.16030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a3/}
}
TY  - JOUR
AU  - Ashraf, Mohammad
TI  - A commutativity theorem for associative rings
JO  - Archivum mathematicum
PY  - 1995
SP  - 201
EP  - 204
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a3/
LA  - en
ID  - ARM_1995__31_3_a3
ER  - 
%0 Journal Article
%A Ashraf, Mohammad
%T A commutativity theorem for associative rings
%J Archivum mathematicum
%D 1995
%P 201-204
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a3/
%G en
%F ARM_1995__31_3_a3
Ashraf, Mohammad. A commutativity theorem for associative rings. Archivum mathematicum, Tome 31 (1995) no. 3, pp. 201-204. http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a3/