Total connections in Lie groupoids
Archivum mathematicum, Tome 31 (1995) no. 3, pp. 183-200.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A total connection of order $r$ in a Lie groupoid $\Phi $ over $M$ is defined as a first order connections in the $(r-1)$-st jet prolongations of $\Phi $. A connection in the groupoid $\Phi $ together with a linear connection on its base, ie. in the groupoid $\Pi (M)$, give rise to a total connection of order $r$, which is called simple. It is shown that this simple connection is curvature-free iff the generating connections are. Also, an $r$-th order total connection in $\Phi $ defines a total reduction of the $r$-th prolongation of $\Phi $ to $\Phi \times \Pi (M)$. It is shown that when $r>2$ then this total reduction of a simple connection is holonomic iff the generating connections are curvature free and the one on $M$ also torsion-free.
Classification : 53C05, 58A20
Keywords: Lie groupoids; semi-holonomic jets; higher order connections; total connections; simple connections
@article{ARM_1995__31_3_a2,
     author = {Virsik, George},
     title = {Total connections in {Lie} groupoids},
     journal = {Archivum mathematicum},
     pages = {183--200},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1995},
     mrnumber = {1368257},
     zbl = {0841.53024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a2/}
}
TY  - JOUR
AU  - Virsik, George
TI  - Total connections in Lie groupoids
JO  - Archivum mathematicum
PY  - 1995
SP  - 183
EP  - 200
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a2/
LA  - en
ID  - ARM_1995__31_3_a2
ER  - 
%0 Journal Article
%A Virsik, George
%T Total connections in Lie groupoids
%J Archivum mathematicum
%D 1995
%P 183-200
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a2/
%G en
%F ARM_1995__31_3_a2
Virsik, George. Total connections in Lie groupoids. Archivum mathematicum, Tome 31 (1995) no. 3, pp. 183-200. http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a2/