Pre-solid varieties of semigroups
Archivum mathematicum, Tome 31 (1995) no. 3, pp. 171-181
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Pre-hyperidentities generalize the concept of a hyperidentity. A variety $V$ is said to be pre-solid if every identity in $V$ is a pre-hyperidentity. Every solid variety is pre-solid. We consider pre-solid varieties of semigroups which are not solid, determine the smallest and the largest of them, and some elements in this interval.
@article{ARM_1995__31_3_a1,
author = {Denecke, K. and Koppitz, J.},
title = {Pre-solid varieties of semigroups},
journal = {Archivum mathematicum},
pages = {171--181},
publisher = {mathdoc},
volume = {31},
number = {3},
year = {1995},
mrnumber = {1368256},
zbl = {0842.20049},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a1/}
}
Denecke, K.; Koppitz, J. Pre-solid varieties of semigroups. Archivum mathematicum, Tome 31 (1995) no. 3, pp. 171-181. http://geodesic.mathdoc.fr/item/ARM_1995__31_3_a1/