An integral condition of oscillation for equation $y'''+p(t)y'+q(t)y=0$ with nonnegative coefficients
Archivum mathematicum, Tome 31 (1995) no. 2, pp. 155-161
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Our aim in this paper is to obtain a new oscillation criterion for equation \[ y^{\prime \prime \prime }+ p(t)y^{\prime } + q(t)y = 0 \] with a nonnegative coefficients which extends and improves some oscillation criteria for this equation. In the special case of equation (*), namely, for equation $ y^{\prime \prime \prime }+ q(t)y = 0$, our results solve the open question of $Chanturiya$.
Classification :
34C10, 34C11
Keywords: nonoscillatory and oscillatory solution; second order Riccati equation
Keywords: nonoscillatory and oscillatory solution; second order Riccati equation
@article{ARM_1995__31_2_a6,
author = {\v{S}kerl{\'\i}k, Anton},
title = {An integral condition of oscillation for equation $y'''+p(t)y'+q(t)y=0$ with nonnegative coefficients},
journal = {Archivum mathematicum},
pages = {155--161},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {1995},
mrnumber = {1357983},
zbl = {0843.34039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995__31_2_a6/}
}
TY - JOUR AU - Škerlík, Anton TI - An integral condition of oscillation for equation $y'''+p(t)y'+q(t)y=0$ with nonnegative coefficients JO - Archivum mathematicum PY - 1995 SP - 155 EP - 161 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1995__31_2_a6/ LA - en ID - ARM_1995__31_2_a6 ER -
Škerlík, Anton. An integral condition of oscillation for equation $y'''+p(t)y'+q(t)y=0$ with nonnegative coefficients. Archivum mathematicum, Tome 31 (1995) no. 2, pp. 155-161. http://geodesic.mathdoc.fr/item/ARM_1995__31_2_a6/