Liftings of $1$-forms to the linear $r$-tangent bundle
Archivum mathematicum, Tome 31 (1995) no. 2, pp. 97-111.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $r,n$ be fixed natural numbers. We prove that for $n$-manifolds the set of all linear natural operators $T^*\rightarrow T^*T^{(r)}$ is a finitely dimensional vector space over $R$. We construct explicitly the bases of the vector spaces. As a corollary we find all linear natural operators $T^*\rightarrow T^{r*}$.
Classification : 53A55, 58A20
Keywords: linear r-tangent bundle; linear natural operator; 1-form
@article{ARM_1995__31_2_a1,
     author = {Mikulski, W. M.},
     title = {Liftings of $1$-forms to the linear $r$-tangent bundle},
     journal = {Archivum mathematicum},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1995},
     mrnumber = {1357978},
     zbl = {0844.58006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995__31_2_a1/}
}
TY  - JOUR
AU  - Mikulski, W. M.
TI  - Liftings of $1$-forms to the linear $r$-tangent bundle
JO  - Archivum mathematicum
PY  - 1995
SP  - 97
EP  - 111
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1995__31_2_a1/
LA  - en
ID  - ARM_1995__31_2_a1
ER  - 
%0 Journal Article
%A Mikulski, W. M.
%T Liftings of $1$-forms to the linear $r$-tangent bundle
%J Archivum mathematicum
%D 1995
%P 97-111
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1995__31_2_a1/
%G en
%F ARM_1995__31_2_a1
Mikulski, W. M. Liftings of $1$-forms to the linear $r$-tangent bundle. Archivum mathematicum, Tome 31 (1995) no. 2, pp. 97-111. http://geodesic.mathdoc.fr/item/ARM_1995__31_2_a1/