Liftings of $1$-forms to the linear $r$-tangent bundle
Archivum mathematicum, Tome 31 (1995) no. 2, pp. 97-111
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $r,n$ be fixed natural numbers. We prove that for $n$-manifolds the set of all linear natural operators $T^*\rightarrow T^*T^{(r)}$ is a finitely dimensional vector space over $R$. We construct explicitly the bases of the vector spaces. As a corollary we find all linear natural operators $T^*\rightarrow T^{r*}$.
Classification :
53A55, 58A20
Keywords: linear r-tangent bundle; linear natural operator; 1-form
Keywords: linear r-tangent bundle; linear natural operator; 1-form
@article{ARM_1995__31_2_a1,
author = {Mikulski, W. M.},
title = {Liftings of $1$-forms to the linear $r$-tangent bundle},
journal = {Archivum mathematicum},
pages = {97--111},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {1995},
mrnumber = {1357978},
zbl = {0844.58006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1995__31_2_a1/}
}
Mikulski, W. M. Liftings of $1$-forms to the linear $r$-tangent bundle. Archivum mathematicum, Tome 31 (1995) no. 2, pp. 97-111. http://geodesic.mathdoc.fr/item/ARM_1995__31_2_a1/