Generalized reciprocity for self-adjoint linear differential equations
Archivum mathematicum, Tome 31 (1995) no. 2, pp. 85-96.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $L(y)=y^{(n)}+q_{n-1}(t)y^{(n-1)}+\dots +q_0(t)y,\,t\in [a,b)$, be an $n$-th order differential operator, $L^*$ be its adjoint and $p,w$ be positive functions. It is proved that the self-adjoint equation $L^*\bigl (p(t)L(y)\bigr ) =w(t)y$ is nonoscillatory at $b$ if and only if the equation $L\bigl (w^{-1}(t)L^*(y)\bigr )=p^{-1}(t)y$ is nonoscillatory at $b$. Using this result a new necessary condition for property BD of the self-adjoint differential operators with middle terms is obtained.
Classification : 34B05, 34C10, 34L05
Keywords: Self-adjoint equation; reciprocal equation; property BD; principal solution; minimal differential operator.Supported by the Grant No. 201/93/0452 of the Czech Grant Agency
@article{ARM_1995__31_2_a0,
     author = {Do\v{s}l\'y, Ond\v{r}ej},
     title = {Generalized reciprocity for self-adjoint linear differential equations},
     journal = {Archivum mathematicum},
     pages = {85--96},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1995},
     mrnumber = {1357977},
     zbl = {0841.34032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995__31_2_a0/}
}
TY  - JOUR
AU  - Došlý, Ondřej
TI  - Generalized reciprocity for self-adjoint linear differential equations
JO  - Archivum mathematicum
PY  - 1995
SP  - 85
EP  - 96
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1995__31_2_a0/
LA  - en
ID  - ARM_1995__31_2_a0
ER  - 
%0 Journal Article
%A Došlý, Ondřej
%T Generalized reciprocity for self-adjoint linear differential equations
%J Archivum mathematicum
%D 1995
%P 85-96
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1995__31_2_a0/
%G en
%F ARM_1995__31_2_a0
Došlý, Ondřej. Generalized reciprocity for self-adjoint linear differential equations. Archivum mathematicum, Tome 31 (1995) no. 2, pp. 85-96. http://geodesic.mathdoc.fr/item/ARM_1995__31_2_a0/