Parallelisability conditions for differentiable three-webs
Archivum mathematicum, Tome 31 (1995) no. 1, pp. 75-84.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Our aim is to find conditions under which a 3-web on a smooth $2n$-dimensional manifold is locally equivalent with a web formed by three systems of parallel $n$-planes in ${R}^{2n}$. We will present here a new approach to this “classical” problem using projectors onto the distributions of tangent subspaces to the leaves of foliations forming the web.
Classification : 53A60
Keywords: distribution; projector; manifold; three-web; regular (parallelisable) web
@article{ARM_1995__31_1_a8,
     author = {Van\v{z}urov\'a, Alena},
     title = {Parallelisability conditions for differentiable three-webs},
     journal = {Archivum mathematicum},
     pages = {75--84},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {1995},
     mrnumber = {1342378},
     zbl = {0835.53019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995__31_1_a8/}
}
TY  - JOUR
AU  - Vanžurová, Alena
TI  - Parallelisability conditions for differentiable three-webs
JO  - Archivum mathematicum
PY  - 1995
SP  - 75
EP  - 84
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1995__31_1_a8/
LA  - en
ID  - ARM_1995__31_1_a8
ER  - 
%0 Journal Article
%A Vanžurová, Alena
%T Parallelisability conditions for differentiable three-webs
%J Archivum mathematicum
%D 1995
%P 75-84
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1995__31_1_a8/
%G en
%F ARM_1995__31_1_a8
Vanžurová, Alena. Parallelisability conditions for differentiable three-webs. Archivum mathematicum, Tome 31 (1995) no. 1, pp. 75-84. http://geodesic.mathdoc.fr/item/ARM_1995__31_1_a8/