Diamond identities for relative congruences
Archivum mathematicum, Tome 31 (1995) no. 1, pp. 65-74.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a class $K$ of structures and $A\in K$ let ${Con}^*(A)$ resp. ${Con}^{K}(A)$ denote the lattices of $*$-congruences resp. $K$-congruences of $A$, cf. Weaver [25]. Let ${Con}^*(K):=I\lbrace {Con}^*(A)\colon\ A \in K\rbrace $ where $I$ is the operator of forming isomorphic copies, and ${Con}^r(K):=I\lbrace {Con}^{K}(A)\colon\ A \in K\rbrace $. For an ordered algebra $A$ the lattice of order congruences of $A$ is denoted by ${Con}^{}(A)$, and let ${Con}^{}(K):=I\lbrace {Con}^{}(A)\colon\ A \in K\rbrace $ if $K$ is a class of ordered algebras. The operators of forming subdirect squares and direct products are denoted by $Q^s$ and $P$, respectively. Let $\lambda $ be a lattice identity and let $\Sigma $ be a set of lattice identities. Let $\Sigma \mathrel {\models _c}\lambda\ (r;Q^s,P)$ denote that for every class $K$ of structures which is closed under $Q^s$ and $P$ if $\Sigma $ holds is ${Con}^r(K)$ then so does $\lambda$. The consequence relations $\Sigma \mathrel {\models _c}\lambda\ (*;Q^s)$,   $\Sigma \mathrel {\models _c}\lambda\ (\le ;Q^s)$ and $\Sigma \mathrel {\models _c}\lambda\ (H,S,P)$ are defined analogously; the latter is the usual consequence relation in congruence varieties (cf. Jónsson [19]), so it will also be denoted simply by $\mathrel {\models _c}$. If $\Sigma \lnot \models \lambda $ (in the class of all lattices) then the above-mentioned consequences are called nontrivial. The present paper shows that if $\Sigma \models$ modularity and $\Sigma \mathrel {\models _c}\lambda $ is a known result in the theory of congruence varieties then $\Sigma \mathrel {\models _c}\lambda\ (*; Q^s)$, $\Sigma \mathrel {\models _c}\lambda\ (\le ;Q^s)$ and $\Sigma \mathrel {\models _c}\lambda\ (r;Q^s,P)$ as well. In most of these cases $\lambda $ is a diamond identity in the sense of [3].
Classification : 06C05, 08A30, 08B10
Keywords: Congruence variety; relative congruence; ordered algebra; von Neumann frame; lattice identity
@article{ARM_1995__31_1_a7,
     author = {Cz\'edli, G\'abor},
     title = {Diamond identities for relative congruences},
     journal = {Archivum mathematicum},
     pages = {65--74},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {1995},
     mrnumber = {1342377},
     zbl = {0842.08004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1995__31_1_a7/}
}
TY  - JOUR
AU  - Czédli, Gábor
TI  - Diamond identities for relative congruences
JO  - Archivum mathematicum
PY  - 1995
SP  - 65
EP  - 74
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1995__31_1_a7/
LA  - en
ID  - ARM_1995__31_1_a7
ER  - 
%0 Journal Article
%A Czédli, Gábor
%T Diamond identities for relative congruences
%J Archivum mathematicum
%D 1995
%P 65-74
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1995__31_1_a7/
%G en
%F ARM_1995__31_1_a7
Czédli, Gábor. Diamond identities for relative congruences. Archivum mathematicum, Tome 31 (1995) no. 1, pp. 65-74. http://geodesic.mathdoc.fr/item/ARM_1995__31_1_a7/