On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$
Archivum mathematicum, Tome 30 (1994) no. 4, pp. 263-270.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The aim of this paper is to prove the following Theorem Theorem Let $K$ be an octic subfield of the field $Q(\zeta _p+\zeta _p^{-1})$ and let $p=n^4+16$ be prime. Then $p$ divides $h_K$ if and only if $p$ divides $B_j$ for some $j=\frac{p-1}{8}$, $3\frac{p-1}{8}$, $5\frac{p-1}{8}$, $7\frac{p-1}{8}$.
Classification : 11B68, 11R18, 11R20, 11R29
@article{ARM_1994__30_4_a2,
     author = {Jakubec, Stanislav},
     title = {On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$},
     journal = {Archivum mathematicum},
     pages = {263--270},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {1994},
     mrnumber = {1322570},
     zbl = {0818.11042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1994__30_4_a2/}
}
TY  - JOUR
AU  - Jakubec, Stanislav
TI  - On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$
JO  - Archivum mathematicum
PY  - 1994
SP  - 263
EP  - 270
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1994__30_4_a2/
LA  - en
ID  - ARM_1994__30_4_a2
ER  - 
%0 Journal Article
%A Jakubec, Stanislav
%T On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$
%J Archivum mathematicum
%D 1994
%P 263-270
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1994__30_4_a2/
%G en
%F ARM_1994__30_4_a2
Jakubec, Stanislav. On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$. Archivum mathematicum, Tome 30 (1994) no. 4, pp. 263-270. http://geodesic.mathdoc.fr/item/ARM_1994__30_4_a2/