On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$
Archivum mathematicum, Tome 30 (1994) no. 4, pp. 263-270
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The aim of this paper is to prove the following Theorem Theorem Let $K$ be an octic subfield of the field $Q(\zeta _p+\zeta _p^{-1})$ and let $p=n^4+16$ be prime. Then $p$ divides $h_K$ if and only if $p$ divides $B_j$ for some $j=\frac{p-1}{8}$, $3\frac{p-1}{8}$, $5\frac{p-1}{8}$, $7\frac{p-1}{8}$.
@article{ARM_1994__30_4_a2,
author = {Jakubec, Stanislav},
title = {On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$},
journal = {Archivum mathematicum},
pages = {263--270},
publisher = {mathdoc},
volume = {30},
number = {4},
year = {1994},
mrnumber = {1322570},
zbl = {0818.11042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1994__30_4_a2/}
}
TY - JOUR AU - Jakubec, Stanislav TI - On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$ JO - Archivum mathematicum PY - 1994 SP - 263 EP - 270 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1994__30_4_a2/ LA - en ID - ARM_1994__30_4_a2 ER -
Jakubec, Stanislav. On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$. Archivum mathematicum, Tome 30 (1994) no. 4, pp. 263-270. http://geodesic.mathdoc.fr/item/ARM_1994__30_4_a2/