Special solutions of linear difference equations with infinite delay
Archivum mathematicum, Tome 30 (1994) no. 2, pp. 139-144.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For the difference equation $(\epsilon )\,\, x_{n+1} = Ax_n + \epsilon \sum _{k = -\infty }^n R_{n-k}x_k$,where $x_n \in Y,\, Y$  is a Banach space, $\epsilon $ is a parameter and  $A$  is a linear, bounded operator. A sufficient condition for the existence of a unique special solution  $y = \lbrace y_n\rbrace _{n=-\infty }^{\infty }$  passing through the point  $x_0 \in Y$  is proved. This special solution converges to the solution of the equation (0) as  $\epsilon \rightarrow 0$.
Classification : 34K30, 39A10, 39A70, 47B39
Keywords: difference equation; infinite delay; special solution
@article{ARM_1994__30_2_a5,
     author = {Medve\v{d}, Milan},
     title = {Special solutions of linear difference equations with infinite delay},
     journal = {Archivum mathematicum},
     pages = {139--144},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1994},
     mrnumber = {1292565},
     zbl = {0819.39001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1994__30_2_a5/}
}
TY  - JOUR
AU  - Medveď, Milan
TI  - Special solutions of linear difference equations with infinite delay
JO  - Archivum mathematicum
PY  - 1994
SP  - 139
EP  - 144
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1994__30_2_a5/
LA  - en
ID  - ARM_1994__30_2_a5
ER  - 
%0 Journal Article
%A Medveď, Milan
%T Special solutions of linear difference equations with infinite delay
%J Archivum mathematicum
%D 1994
%P 139-144
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1994__30_2_a5/
%G en
%F ARM_1994__30_2_a5
Medveď, Milan. Special solutions of linear difference equations with infinite delay. Archivum mathematicum, Tome 30 (1994) no. 2, pp. 139-144. http://geodesic.mathdoc.fr/item/ARM_1994__30_2_a5/