Special solutions of linear difference equations with infinite delay
Archivum mathematicum, Tome 30 (1994) no. 2, pp. 139-144
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For the difference equation $(\epsilon )\,\, x_{n+1} = Ax_n + \epsilon \sum _{k = -\infty }^n R_{n-k}x_k$,where $x_n \in Y,\, Y$ is a Banach space, $\epsilon $ is a parameter and $A$ is a linear, bounded operator. A sufficient condition for the existence of a unique special solution $y = \lbrace y_n\rbrace _{n=-\infty }^{\infty }$ passing through the point $x_0 \in Y$ is proved. This special solution converges to the solution of the equation (0) as $\epsilon \rightarrow 0$.
Classification :
34K30, 39A10, 39A70, 47B39
Keywords: difference equation; infinite delay; special solution
Keywords: difference equation; infinite delay; special solution
@article{ARM_1994__30_2_a5,
author = {Medve\v{d}, Milan},
title = {Special solutions of linear difference equations with infinite delay},
journal = {Archivum mathematicum},
pages = {139--144},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {1994},
mrnumber = {1292565},
zbl = {0819.39001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1994__30_2_a5/}
}
Medveď, Milan. Special solutions of linear difference equations with infinite delay. Archivum mathematicum, Tome 30 (1994) no. 2, pp. 139-144. http://geodesic.mathdoc.fr/item/ARM_1994__30_2_a5/