Monotone retractions and depth of continua
Archivum mathematicum, Tome 30 (1994) no. 2, pp. 131-137.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that for every two countable ordinals $\alpha $ and $\beta $ with $\alpha > \beta $ there exist $\lambda $-dendroids $X$ and $Y$ whose depths are $\alpha $ and $\beta $ respectively, and a monotone retraction from $X$ onto $Y$. Moreover, the continua $X$ and $Y$ can be either both arclike or both fans.
Classification : 54C10, 54F15
Keywords: arclike; continuum; decomposable; dendroid; depth; end; fan; mapping; monotone; retraction; unicoherent
@article{ARM_1994__30_2_a4,
     author = {Charatonik, J. J. and Spyrou, P.},
     title = {Monotone retractions and depth of continua},
     journal = {Archivum mathematicum},
     pages = {131--137},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1994},
     mrnumber = {1292564},
     zbl = {0817.54011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1994__30_2_a4/}
}
TY  - JOUR
AU  - Charatonik, J. J.
AU  - Spyrou, P.
TI  - Monotone retractions and depth of continua
JO  - Archivum mathematicum
PY  - 1994
SP  - 131
EP  - 137
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1994__30_2_a4/
LA  - en
ID  - ARM_1994__30_2_a4
ER  - 
%0 Journal Article
%A Charatonik, J. J.
%A Spyrou, P.
%T Monotone retractions and depth of continua
%J Archivum mathematicum
%D 1994
%P 131-137
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1994__30_2_a4/
%G en
%F ARM_1994__30_2_a4
Charatonik, J. J.; Spyrou, P. Monotone retractions and depth of continua. Archivum mathematicum, Tome 30 (1994) no. 2, pp. 131-137. http://geodesic.mathdoc.fr/item/ARM_1994__30_2_a4/