Monotone retractions and depth of continua
Archivum mathematicum, Tome 30 (1994) no. 2, pp. 131-137
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is shown that for every two countable ordinals $\alpha $ and $\beta $ with $\alpha > \beta $ there exist $\lambda $-dendroids $X$ and $Y$ whose depths are $\alpha $ and $\beta $ respectively, and a monotone retraction from $X$ onto $Y$. Moreover, the continua $X$ and $Y$ can be either both arclike or both fans.
Classification :
54C10, 54F15
Keywords: arclike; continuum; decomposable; dendroid; depth; end; fan; mapping; monotone; retraction; unicoherent
Keywords: arclike; continuum; decomposable; dendroid; depth; end; fan; mapping; monotone; retraction; unicoherent
@article{ARM_1994__30_2_a4,
author = {Charatonik, J. J. and Spyrou, P.},
title = {Monotone retractions and depth of continua},
journal = {Archivum mathematicum},
pages = {131--137},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {1994},
mrnumber = {1292564},
zbl = {0817.54011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1994__30_2_a4/}
}
Charatonik, J. J.; Spyrou, P. Monotone retractions and depth of continua. Archivum mathematicum, Tome 30 (1994) no. 2, pp. 131-137. http://geodesic.mathdoc.fr/item/ARM_1994__30_2_a4/