On a fourth order periodic boundary value problem
Archivum mathematicum, Tome 30 (1994) no. 1, pp. 1-8
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Existence and uniqueness of the solution to a fourth order nonlinear vector periodic boundary value problem is proved by using the estimates for derivatives of the Green function for the corresponding homogenous scalar problem
Classification :
34B10, 34B15, 34B27, 34C25, 47N20
Keywords: symmetric operator; Green function; generalized Banach space; Lipschitz condition; eigenvalue
Keywords: symmetric operator; Green function; generalized Banach space; Lipschitz condition; eigenvalue
@article{ARM_1994__30_1_a0,
author = {Pinda, \v{L}udov{\'\i}t},
title = {On a fourth order periodic boundary value problem},
journal = {Archivum mathematicum},
pages = {1--8},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {1994},
mrnumber = {1282107},
zbl = {0808.34020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1994__30_1_a0/}
}
Pinda, Ľudovít. On a fourth order periodic boundary value problem. Archivum mathematicum, Tome 30 (1994) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/ARM_1994__30_1_a0/