A remark on second order functional-differential systems
Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 169-176
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is proved that under some conditions the set of solutions to initial value problem for second order functional differential system on an unbounded interval is a compact $R_\delta $-set and hence nonvoid, compact and connected set in a Fréchet space. The proof is based on a Kubáček’s theorem.
Classification :
34K05, 34K25, 54H25
Keywords: initial value problem; functional differential system; $R_\delta$-set; Kubáček’s theorem; Fréchet space
Keywords: initial value problem; functional differential system; $R_\delta$-set; Kubáček’s theorem; Fréchet space
@article{ARM_1993__29_3-4_a6,
author = {\v{S}eda, Valter and Belohorec, \v{S}tefan},
title = {A remark on second order functional-differential systems},
journal = {Archivum mathematicum},
pages = {169--176},
publisher = {mathdoc},
volume = {29},
number = {3-4},
year = {1993},
mrnumber = {1263119},
zbl = {0804.34060},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1993__29_3-4_a6/}
}
Šeda, Valter; Belohorec, Štefan. A remark on second order functional-differential systems. Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 169-176. http://geodesic.mathdoc.fr/item/ARM_1993__29_3-4_a6/