Oscillatory and asymptotic behaviour of solutions of advanced functional equations
Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 161-166
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we compare the asymptotic behaviour of the advanced functional equation \[ L_nu(t)-F\big (t,u[g(t)]\big )= 0\] with the asymptotic behaviour of the set of ordinary functional equations \[ \alpha _iu(t)-F\big (t,u(t)\big )= 0. \] On the basis of this comparison principle the sufficient conditions for property (B) of equation (*) are deduced.
Classification :
34C10, 34K15, 34K99
Keywords: comparison theorem; advanced argument; property (B)
Keywords: comparison theorem; advanced argument; property (B)
@article{ARM_1993__29_3-4_a4,
author = {D\v{z}urina, Jozef},
title = {Oscillatory and asymptotic behaviour of solutions of advanced functional equations},
journal = {Archivum mathematicum},
pages = {161--166},
publisher = {mathdoc},
volume = {29},
number = {3-4},
year = {1993},
mrnumber = {1263117},
zbl = {0811.34052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1993__29_3-4_a4/}
}
Džurina, Jozef. Oscillatory and asymptotic behaviour of solutions of advanced functional equations. Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 161-166. http://geodesic.mathdoc.fr/item/ARM_1993__29_3-4_a4/