$(L,\varphi)$-representations of algebras
Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 135-143
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we introduce the concept of an $(L, \varphi )$-representation of an algebra $A$ which is a common generalization of subdirect, full subdirect and weak direct representation of $A$. Here we characterize such representations in terms of congruence relations.
Classification :
08A05, 08A30, 08B26
Keywords: finitely restricted subdirect product; full subdirect product; weak direct product; congruence lattice; distributivity
Keywords: finitely restricted subdirect product; full subdirect product; weak direct product; congruence lattice; distributivity
@article{ARM_1993__29_3-4_a1,
author = {Walendziak, Andrzej},
title = {$(L,\varphi)$-representations of algebras},
journal = {Archivum mathematicum},
pages = {135--143},
publisher = {mathdoc},
volume = {29},
number = {3-4},
year = {1993},
mrnumber = {1263114},
zbl = {0796.08002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1993__29_3-4_a1/}
}
Walendziak, Andrzej. $(L,\varphi)$-representations of algebras. Archivum mathematicum, Tome 29 (1993) no. 3-4, pp. 135-143. http://geodesic.mathdoc.fr/item/ARM_1993__29_3-4_a1/