A characterization of Krull rings with zero divisors
Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 119-122
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is proved that a Marot ring is a Krull ring if and only if its monoid of regular elements is a Krull monoid.
Classification :
13F05
Keywords: Krull ring; Marot ring; divisor theory; essential valuation; discrete rank one valuation ring
Keywords: Krull ring; Marot ring; divisor theory; essential valuation; discrete rank one valuation ring
@article{ARM_1993__29_1-2_a13,
author = {Halter-Koch, Franz},
title = {A characterization of {Krull} rings with zero divisors},
journal = {Archivum mathematicum},
pages = {119--122},
publisher = {mathdoc},
volume = {29},
number = {1-2},
year = {1993},
mrnumber = {1242634},
zbl = {0818.13011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1993__29_1-2_a13/}
}
Halter-Koch, Franz. A characterization of Krull rings with zero divisors. Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 119-122. http://geodesic.mathdoc.fr/item/ARM_1993__29_1-2_a13/