Further higher monotonicity properties of Sturm-Liouville functions
Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 83-96
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Suppose that the function $q(t)$ in the differential equation (1) $y^{\prime \prime }+q(t)y=0 $ is decreasing on $(b,\infty )$ where $b \ge 0$. We give conditions on $q$ which ensure that (1) has a pair of solutions $y_1(t),\;y_2(t)$ such that the $n$-th derivative ($n\ge 1$) of the function $p(t)= y_1^2(t) +y_2^2(t)$ has the sign $(- 1)^{n+1}$ for sufficiently large $t$ and that the higher differences of a sequence related to the zeros of solutions of (1) are ultimately regular in sign.
Classification :
34B30, 34C10, 34D05
Keywords: n-times monotonic functions; completely monotonic functions; ultimately monotonic functions and sequences; regularly varying functions; Appell differential equation; generalized Airy equation; higher differences
Keywords: n-times monotonic functions; completely monotonic functions; ultimately monotonic functions and sequences; regularly varying functions; Appell differential equation; generalized Airy equation; higher differences
@article{ARM_1993__29_1-2_a10,
author = {Do\v{s}l\'a, Zuzana and H\'a\v{c}ik, Milo\v{s} and Muldoon, Martin E.},
title = {Further higher monotonicity properties of {Sturm-Liouville} functions},
journal = {Archivum mathematicum},
pages = {83--96},
publisher = {mathdoc},
volume = {29},
number = {1-2},
year = {1993},
mrnumber = {1242631},
zbl = {0812.34010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1993__29_1-2_a10/}
}
TY - JOUR AU - Došlá, Zuzana AU - Háčik, Miloš AU - Muldoon, Martin E. TI - Further higher monotonicity properties of Sturm-Liouville functions JO - Archivum mathematicum PY - 1993 SP - 83 EP - 96 VL - 29 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1993__29_1-2_a10/ LA - en ID - ARM_1993__29_1-2_a10 ER -
Došlá, Zuzana; Háčik, Miloš; Muldoon, Martin E. Further higher monotonicity properties of Sturm-Liouville functions. Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 83-96. http://geodesic.mathdoc.fr/item/ARM_1993__29_1-2_a10/