On a new family of homogeneous Einstein manifolds
Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 199-204.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that there exists exactly one homothety class of invariant Einstein metrics on each space $[SU(2)]^{S+1}/T^S$ defined below.
Classification : 53C25, 53C30
Keywords: Einstein manifolds; homogeneous Riemannian manifolds; Ricci curvature; curvature tensor
@article{ARM_1992__28_3-4_a7,
     author = {Rodionov, E. D.},
     title = {On a new family of homogeneous {Einstein} manifolds},
     journal = {Archivum mathematicum},
     pages = {199--204},
     publisher = {mathdoc},
     volume = {28},
     number = {3-4},
     year = {1992},
     mrnumber = {1222287},
     zbl = {0787.53037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a7/}
}
TY  - JOUR
AU  - Rodionov, E. D.
TI  - On a new family of homogeneous Einstein manifolds
JO  - Archivum mathematicum
PY  - 1992
SP  - 199
EP  - 204
VL  - 28
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a7/
LA  - en
ID  - ARM_1992__28_3-4_a7
ER  - 
%0 Journal Article
%A Rodionov, E. D.
%T On a new family of homogeneous Einstein manifolds
%J Archivum mathematicum
%D 1992
%P 199-204
%V 28
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a7/
%G en
%F ARM_1992__28_3-4_a7
Rodionov, E. D. On a new family of homogeneous Einstein manifolds. Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 199-204. http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a7/