Natural affinors on higher order cotangent bundle
Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 175-180.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

All natural affinors on the $r$-th order cotangent bundle $T^{r*}M$ are determined. Basic affinors of this type are the identity affinor id of $TT^{r*}M$ and the $s$-th power affinors $Q^s_M : TT^{r*}M \rightarrow VT^{r*}M$ with $s=1, \dots , r$ defined by the $s$-th power transformations $A^{r,r}_s$ of $T^{r*}M$. An arbitrary natural affinor is a linear combination of the basic ones.
Classification : 53A55, 58A20
Keywords: higher order cotangent bundle; natural affinor
@article{ARM_1992__28_3-4_a4,
     author = {Kurek, Jan},
     title = {Natural affinors on higher order cotangent bundle},
     journal = {Archivum mathematicum},
     pages = {175--180},
     publisher = {mathdoc},
     volume = {28},
     number = {3-4},
     year = {1992},
     mrnumber = {1222284},
     zbl = {0782.58007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a4/}
}
TY  - JOUR
AU  - Kurek, Jan
TI  - Natural affinors on higher order cotangent bundle
JO  - Archivum mathematicum
PY  - 1992
SP  - 175
EP  - 180
VL  - 28
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a4/
LA  - en
ID  - ARM_1992__28_3-4_a4
ER  - 
%0 Journal Article
%A Kurek, Jan
%T Natural affinors on higher order cotangent bundle
%J Archivum mathematicum
%D 1992
%P 175-180
%V 28
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a4/
%G en
%F ARM_1992__28_3-4_a4
Kurek, Jan. Natural affinors on higher order cotangent bundle. Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 175-180. http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a4/