Commutators of flows and fields
Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 229-236.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The well known formula $[X,Y]=\tfrac{1}{2}\tfrac{\partial ^2}{\partial t^2}|_0 (^Y_{-t}ø^X_{-t}ø^Y_tø^X_t)$ for vector fields $X$, $Y$ is generalized to arbitrary bracket expressions and arbitrary curves of local diffeomorphisms.
Classification : 37C10, 58F25
Keywords: commutators; flows; vector fields
@article{ARM_1992__28_3-4_a11,
     author = {Mauhart, Markus and Michor, Peter W.},
     title = {Commutators of flows and fields},
     journal = {Archivum mathematicum},
     pages = {229--236},
     publisher = {mathdoc},
     volume = {28},
     number = {3-4},
     year = {1992},
     mrnumber = {1222291},
     zbl = {0784.58051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a11/}
}
TY  - JOUR
AU  - Mauhart, Markus
AU  - Michor, Peter W.
TI  - Commutators of flows and fields
JO  - Archivum mathematicum
PY  - 1992
SP  - 229
EP  - 236
VL  - 28
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a11/
LA  - en
ID  - ARM_1992__28_3-4_a11
ER  - 
%0 Journal Article
%A Mauhart, Markus
%A Michor, Peter W.
%T Commutators of flows and fields
%J Archivum mathematicum
%D 1992
%P 229-236
%V 28
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a11/
%G en
%F ARM_1992__28_3-4_a11
Mauhart, Markus; Michor, Peter W. Commutators of flows and fields. Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 229-236. http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a11/