The structure tensor and first order natural differential operators
Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 121-138
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The notion of a structure tensor of section of first order natural bundles with homogeneous standard fibre is introduced. Properties of the structure tensor operator are studied. The universal factorization property of the structure tensor operator is proved and used for classification of first order $*$-natural differential operators $\underline{D}:\underline{T\times T} \rightarrow \underline{T}$ for $n\ge 3$.
Classification :
53A55, 53C10, 58A20
Keywords: natural bundle; natural affine; vector bundle; natural differential operator; G-structure; structure tensor
Keywords: natural bundle; natural affine; vector bundle; natural differential operator; G-structure; structure tensor
@article{ARM_1992__28_3-4_a0,
author = {Kobak, Piotr},
title = {The structure tensor and first order natural differential operators},
journal = {Archivum mathematicum},
pages = {121--138},
publisher = {mathdoc},
volume = {28},
number = {3-4},
year = {1992},
mrnumber = {1222280},
zbl = {0785.53014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a0/}
}
Kobak, Piotr. The structure tensor and first order natural differential operators. Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 121-138. http://geodesic.mathdoc.fr/item/ARM_1992__28_3-4_a0/