Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$
Archivum mathematicum, Tome 15 (1979) no. 2, pp. 119-128.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Classification : 34E05
@article{ARM_1979__15_2_a4,
     author = {Res, Ivo},
     title = {Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$},
     journal = {Archivum mathematicum},
     pages = {119--128},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1979},
     mrnumber = {563144},
     zbl = {0432.34036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1979__15_2_a4/}
}
TY  - JOUR
AU  - Res, Ivo
TI  - Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$
JO  - Archivum mathematicum
PY  - 1979
SP  - 119
EP  - 128
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_1979__15_2_a4/
LA  - en
ID  - ARM_1979__15_2_a4
ER  - 
%0 Journal Article
%A Res, Ivo
%T Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$
%J Archivum mathematicum
%D 1979
%P 119-128
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1979__15_2_a4/
%G en
%F ARM_1979__15_2_a4
Res, Ivo. Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$. Archivum mathematicum, Tome 15 (1979) no. 2, pp. 119-128. http://geodesic.mathdoc.fr/item/ARM_1979__15_2_a4/