Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$
Archivum mathematicum, Tome 15 (1979) no. 2, pp. 119-128
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{ARM_1979__15_2_a4,
author = {Res, Ivo},
title = {Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$},
journal = {Archivum mathematicum},
pages = {119--128},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {1979},
mrnumber = {563144},
zbl = {0432.34036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1979__15_2_a4/}
}
TY - JOUR
AU - Res, Ivo
TI - Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$
JO - Archivum mathematicum
PY - 1979
SP - 119
EP - 128
VL - 15
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ARM_1979__15_2_a4/
LA - en
ID - ARM_1979__15_2_a4
ER -
%0 Journal Article
%A Res, Ivo
%T Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$
%J Archivum mathematicum
%D 1979
%P 119-128
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_1979__15_2_a4/
%G en
%F ARM_1979__15_2_a4
Res, Ivo. Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$. Archivum mathematicum, Tome 15 (1979) no. 2, pp. 119-128. http://geodesic.mathdoc.fr/item/ARM_1979__15_2_a4/