Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{ARM_1979__15_2_a4, author = {Res, Ivo}, title = {Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$}, journal = {Archivum mathematicum}, pages = {119--128}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {1979}, mrnumber = {563144}, zbl = {0432.34036}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ARM_1979__15_2_a4/} }
TY - JOUR AU - Res, Ivo TI - Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$ JO - Archivum mathematicum PY - 1979 SP - 119 EP - 128 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_1979__15_2_a4/ LA - en ID - ARM_1979__15_2_a4 ER -
%0 Journal Article %A Res, Ivo %T Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$ %J Archivum mathematicum %D 1979 %P 119-128 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ARM_1979__15_2_a4/ %G en %F ARM_1979__15_2_a4
Res, Ivo. Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$. Archivum mathematicum, Tome 15 (1979) no. 2, pp. 119-128. http://geodesic.mathdoc.fr/item/ARM_1979__15_2_a4/