The bilinear maximal functions map into $L^p$ for $2/3 p \leq 1$
Annals of mathematics, Tome 151 (2000) no. 1.

Voir la notice de l'article provenant de la source European Mathematical Information Service

Classification : 47G10, 46E30
Mots-clés : bilinear maximal functions, bisublinear maximal operators, model sums
@article{AM_2000_151_1_a1,
     author = {Michael T. Lacey},
     title = {The bilinear maximal functions map into $L^p$ for $2/3 < p \leq 1$},
     journal = {Annals of mathematics},
     publisher = {mathdoc},
     volume = {151},
     number = {1},
     year = {2000},
     url = {http://geodesic.mathdoc.fr/item/AM_2000_151_1_a1/}
}
TY  - JOUR
AU  - Michael T. Lacey
TI  - The bilinear maximal functions map into $L^p$ for $2/3 < p \leq 1$
JO  - Annals of mathematics
PY  - 2000
VL  - 151
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AM_2000_151_1_a1/
ID  - AM_2000_151_1_a1
ER  - 
%0 Journal Article
%A Michael T. Lacey
%T The bilinear maximal functions map into $L^p$ for $2/3 < p \leq 1$
%J Annals of mathematics
%D 2000
%V 151
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AM_2000_151_1_a1/
%F AM_2000_151_1_a1
Michael T. Lacey. The bilinear maximal functions map into $L^p$ for $2/3 < p \leq 1$. Annals of mathematics, Tome 151 (2000) no. 1. http://geodesic.mathdoc.fr/item/AM_2000_151_1_a1/